Verification 1 – Mechanical

The mechanical verification will evaluate the quality of your CAD model. For your design verification, you need to CAD a relatively complete model of your entire robot. Come prepared to lab ready to give a brief, but complete, presentation of your CAD model that addresses each of the following aspects of your design, and follows the guidelines below.

<u>Verification 1 will take place during lab 3 in week 5</u>. Please read the checklist carefully, and be 100% prepared to describe the simulation results and pseudocode.

Feasibility (2 points)

- a) All parts can be acquired or constructed. Don't forget your access to 3D printing (good practice).
- b) Check that all components have accurate dimensions (good practice).
- c) All components are connected to the robot. You can use simplified geometry for the electromechanical components (1 point).
- d) It is easy to distinguish moving parts for propulsion and steering. Either use mates to demonstrate movement, or otherwise ensure that functional steering/propulsion is clearly possible (1 point).

Completeness (2 points)

- a) The model includes all components (1 point):
 - Microcontroller
 - Servomotor
 - Air cylinder
 - Solenoid air valve
 - Air tank (i.e. large rubber tire)

- Pneumatic (air) tubing (any approximation that shows an adequate path is enough
- Battery
- o Rollerblade wheels
- ** complex components (e.g. Arduino) can be properly-dimensioned and labeled**
- b) The air tank is at the correct height, and parallel to the ground (1 point). No component extends beyond the 12" diameter of the robot (per competition rules).

Presentation (1 point)

Format your presentation (3-4 minutes in length) as a slideshow with sufficient and clear images, or a well-rehearsed demonstration in Solidworks or other CAD software.